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In this paper a transformation of the equations of motion of an ideal 

monatomic gas to the coordinates of a uniformly expanding space is in- 

vestigated. With corresponding transformations of time, velocity fields, 

pressures, density and temperature, equations of motion are obtained in 

terms of the new variables which are the same as those in the station- 

ary coordinates. This allows us to extend the entire ordinary gas 

dynamics into the dynamics of an expanding gas and to juxtapose new 

solutions with all the available exact solutions of gas dynamics. In 

the new gas motions considered, the processes taking place over an in- 

finite interval of time t (up to t = m) are realized, which are similar 

to those that in the original ordinary gas motions take Place in a 

finite interval of time. 

In Section 1. gas motions with surfaces of discontinuity (strong dis- 

continuity, tangential discontinuity) are investigated in a general 

manner. Basic theorems for such flows are proved. 

In Section 2. examples of the new exact solutions are investigated, 

namely: 

a) the uniform expansion and uniform compression of a gas: 

b) source or sink type flow; 

c) “simple” waves in uniformly expanding and in uniformly compress- 

ing gas. 

In Sections 3 and 4 the problem of a point explosion in a Uniformly 
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Invariant transformat ion of equations of mot ion 741 

expanding and in a uniformly compressing gas is investigated. 

1. Formulation of the problem and the basic theorems. For 
a monatomic gas the adisbetic index y is equal to S/3 and, therefore, 
the general equations of motion of such a gas, if external forces, fric- 
tion and heat conduction are absent, have the form Iill 

where t is time, p is pressure, p is density, n, y and z are the 
Cartesian coordinates; u, v and w are the vector components of the velo- 
city with respect to the z-, y- and z-axes; symbols (xyz) and (uuw) de- 
note that the remaining equations are obtained by cyclic permutation. 

Let us introduce the new independent variables 

Z== 
ba 

a --, z-c s=g- c 2 (1.4) 

and the new functions 

U’ zzz 
t-c -zt+, t-c Y 

b 
v’=_v-_ w’= t-c 

b b’ 
-w- $ 

b (1.5) 

(l-6) 

where a, b and c are arbitrary constants with the dimension of time. 
Also, the following quantities are valid 

For the operation of differentiation we have 

a a--r 8 a a--z i3 
s=-- b i?q’ az=--%---q’ 

b -- 
(t - C)S 
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The last relation may be transformed into the form 

If we substitute expressions (1.7) and (1.8) into equations (1.1) to 

(1.3) then, by the rules of differentiation (1.9) and (l.lO), we obtain 
equations which are identical to equations (1.1) to (1.3) if in the 

latter we replace t, x, y, z, p and p by T, e, q, 5, p’, p’. ‘lkrefore, 
the system of equations (1.1) to (1.3) is invariant with respect to the 

transformation of variables (1.4) to (1.6). Here the following theorem 

applies: 

lAeoren f.1. If the set of functions 

28 = u’ (h 2, Yr 4, v = v’ (h 2, y, z), w = w’ (t, 5, y, 2) 

P = P’ (tc 5, Y, z), P = P’ (6 5, ?I, 4 (1.11) 

satisfies the system of equations (1.1) to (1.3), then the same system 

of equations is satisfied by the set of functions 

(1.12) 

p = PO (t, 5, y9 4 = (+)“Pr ($9 E * q, ?J 

P = PO 0; 5, y, 4 = (+)“p’ (z,{, q, 6) 

v 
7= U_-t_c’ %=&. rl=&Y, 6 = & 2 (1.13) 

V%“+9*+1?=&Vti+y*+z’ (1.14) 

where, as above, a, b and c are arbitrary constants. Here, from the con- 

dition that p,, and p,, are positive, it follows that the new solution may 

be considered only in the region where (a - 1)/b > 0, i. e. b/( t -c) ‘0. 

The validity of ‘Iheorem 1.1 may also be verified by direct substitu- 

tion of expressions (1.12) to (1.14) into the system (1.1) to (1.31, 

using the condition that the functions (1.11) satisfy this system. 

Let E’ denote the motion determined by the functions (1.11) 

W = Q’ (t, 2, y, 2) = W (t, z, y, 4, v’ 0, 5, y, 4, w’ (tc G y, 4 

P’ (tc 5, y, 49 p’ (t, 2, y, 4 (i.15) 



Invariant transformation of equations of motion 743 

and E, the motion which is given by the functions (1.12), so that 

Qo = a, (t, 2, y, 2) = {uo (t, 2, Y, 49 vo (t9 59 Y9 4 wo (t* 29 Yt 41 
PO (t, 2, Y, 4, PO 09 x9 Y* 4 (1.16) 

where Q’ and Q, are the velocity vectors of the motions. Let us investi- 

gate now a gas motion with the surfaces Z of a strong discontinuity 

F (t, 2, Y, 4 = 0 (1.17) 

l’be surface Z separates the space into two regions: on one side of 

this surface F(x, y, z, t) < 0 and on the other side F( t, X, y, Z) > 0. 

As in [IIt we shall call the first region negative; let the values 

to which any scalar or vector function b(t, x, y, z) tends, when it 

approaches 1 from the side of the negative region, be denoted,by b_; in 

the other region, called the positive region, the corresponding values 

of b on 1 shall be denoted by b,. Let us also introduce the notation 

b+ - b_ = PI 

At the surfaces Z of the strong discontinuity with equation (1.17), 

in the case of motion E’, the conditions of dynamic consistency which 

are satisfied (ki, Chap. 1, Section 2) are 

p’(g+ u’g+v’g+ w’g) [Sz’] = -[p’](gi +g j+i:k) (1.19) 

(1.18) 

(1.20) 

where i, j and k are unit vectors along the axes X, y and Z. In addition, 

the theorem of Tsemplin (LlI, Chap. 1, Section 5) must be satisfied 

(1.21) 

Theorem 1.2. In the case of motions E, the surface of a strong dis- 

continuity (where the conditions of dynamic consistency are satisfied) 

will be the surface 1, with the equations 

F@,E,q, 5) = 0 
ba 

==a---, +bx 
t-c ’ ll=&y, I, = AZ (1.22) 
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To prove this theorem we shall obtain first an auxiliary relation; 

performing a scalar multiplication of (1.19) by r = ir + jy + kz, we 
have 

Let us make the following substitutions in the relations (1.18) to 
(1.20) and (1.21): in place of function F( t, x, y, 2) we substitute 

function F,,(t, x, Y, z) = U-r, <, 51, c), and instead of u’, u’, w’, p’, 

P’ we substitute functions u,,, uO, wO, p,,, pO, determined by the rela- 

tions (1.12), (1.13) and (1.14). We also substitute for the derivatives 
with respect to t, x, y and I the derivatives with respect to T, <, 77, 

5, using the differentiation rules (1.9) and (1.10). ‘lken, using equa- 

tions (1.20) and (1.23) and also the relation [r x rl = 0 in the trans- 

formations, we obtain equations which are obtained from equations (1.18) 

to (1.21) by the foxmal replacement of t, x, y, z, Lo, u’, W’ by T, 5, 

rl, 5, ugj uO, ‘uO, respectively. 

In this way, conditions (1.18) to (1.21) which are valid on the sur- 

faces F( t, x, y, z) = 0 in the case of motion E’, will be equivalent to 

the conditions described on the surfaces F(T, 5, q, 5) = 0 in the case 

of motion E,. 

Hence it follows that the dynamic conditions of consistency are 

satisfied on the surfaces I,, for the motion E,, provided they are satis- 

fied on the surfaces 1’ for the motion E’. Thus, the Theorem 1.2 is 

proved. If the surface 1’ with equation (1.17) is the surface of a 

stationary (tangential) discontinuity for the motion E’, then the sur- 

face 1, with equation (1.22) will also be the surface of a tangential 

discontinuity; indeed, if on the surface of the motion E’ the conditions 

are satisfied that the 1’ surface at all times consists of the same 

particles in each of the regions separated by it 

M ;ir+ u+g+ v,++g = 0, 
LW 
z+~_g+ v_g+u$ = 0 (1.24) 

and the conditions of dynamic consistency 

Ipl = 0 (i.23 

then they are satisfied on the surface Z$, of the motion E,; this may 

easily be verified by the corresponding substitutions. 

If the surface F(t, n, y, z) = 0 of the motion E’ is a non-penetrated 

boundary, then the surface F(-r, c, q, 5) = 0 will be a non-penetrated 

boundary in the motion E,. 
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‘Ihe results obtained allow the juxtaposition of any motions E’ of an 
ideal gas, with and without strong discontinuities, with motions E,. 

2. hamples of new exact solutions. a) Let u’ = u’ = W’ = 0, 

P ’ = p’(x, y, z), p’ = p1 = const, that is, E’ corresponds to a state 
of rest. For E, we obtain 

where p ’ is an arbitrary positive function of the arguments. These 
motions were obtained by Sedov [21 for arbitrary y and p’ = const, as a 
special case of similarity gas motions having central symmetry. However, 
these motions deserve particular attention because they possess a pro- 
perty of homogeneity: the velocity fields of the particles relative toa 
coordinate system fixed with any moving material particle are the same, 
and thus the point x = y = z = 0 in this sense does not differ from any 
other point. Indeed, for any fixed particle z*, y,, t*, equations (2.1) 
obviously give the following law of motion 

dx, x+ dye 
dt -t-_c* 7=** dz* z* -- 

dt t-c (24 

x* -=uU*=const, *= v 
t-c *=const, * 

C 
= w* = const (2.4) 

Any particle under consideration moves with a constant velocity u*, 

v*J W** Every particle moves at constant velocity, but the velocities 
of two different particles are different. Fixing the system of coordi- 
nates to a given particle, let 

21 = 2 - x*, 

Ul = u - u*, 

Then equations (2.1) will 

?/1=?/-?I*, z1= z- z* 
Vl = v - v*, wl=w -w* 

take the form 

Vl =‘--, Zl 
t-c w1= - 

t-c 

which is what was asserted. Equations (2.1) and (2.2) for c < t and 
b > 0 give a uniform expansion of a gas, and for c > t and b < 0 they 
give a uniform compression of a gas. 

In the case of motions in uniform expansions and compressions, 
characterized by equations (2.1) and (2.2), the velocity vector at 
every moment of time in all space is R = (t - c)-lr (proportional to 
the radius vector r), and the pressure p is a function of time only. 

If it is known that a certain motion at some moment of time t = to 



746 A.A. Nikol ‘skii 

possesses these properties, then it will possess them also at t b to. 

Let us solve the following Cauchy problem. Let 

u = Ax, V = LJ, w = AZ (A = const) 

P = f (5, y, 21, p = p. = const for t=ta 

We shall find the motion for t > t,. putting 

b=l/h, c=t,--lfh 

in equations (2.1) and (2.21, and replacing the arbitrary function p’ 
by f, we obtain the solution of the given Cauchy problem 

lu: 
u = I (t - to) + 1 ’ 

LY 
v = I (1 - lo)+ 1 ’ 

liz 
w = I (t - to) + I (2.5) 

1 
I2 = (U-ho + l)d fL-:to+to’ (dt!J+l) ’ (At - Lo + 1 1 (2.6) 

1 
p = (U - b.J + 116 Jhl (2.7) 

‘lhus, the motion for t > to is indeed the motion of uniform expansion 
or compression. 

b) Motion E’ will be a steady spherical source or sink flow of an 

ideal monatomic gas. It is described by the well-known relations [II 

GrrJpv = Q, p = p. 1_L_J&2 3’2, 
( ) 

p = p. + K’3 
( 1 

Q = cons, p. = con&, po = const (2.8) 

According to Theorem 1.1, in order to obtain motion E,, we have to 

replace v, p, p and r by 

t-c 
- V-&)* b ( 

(?)“P, (J++TP, &r 

respectively. 

lhe new solution will be non-steady and it is defined by the relation 

4n (q)“r2p(v-+-) = Q 

P = Po(&)a[l-&~(q+~)2]3’2, p=po(+)113 (2.9) 

c) Motion E’ is a “simple” Riemann wave; the relation between quanti- 

ties for waves of the two types is given by the relations [II 

5 = <$ u + a) t + f (u), v = 0, w=o (a = const) (2.10) 

BplJb = f + u f a, p = $+pSib (3 = const) (2.11) 
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where f(u) is an arbitrary function of the arguments. For the motion E,, 

using Theorem 1.1 and choosing arbitrary constants of the transforma- 

tion of variables, we obtain in connection with case (a) “simple” waves 

in a uniformly expanding and compressing gas 
(2.12) 

I (t -“lo) + 1 
= (% [(At - At* + 1) zz - nz1 + a) T. + f [(At - ka + 1) II - hsf 

hY AZ p = &+PlS, 
t - to 

u = h@-tQ)3_1 ’ I#= h(t-&)+I * z = h(t-to)+1 

P P - ht, + 1) pz/a = f f I(ht - At, + 1) a - AZ]-& a 

Taking the plus sign on the right-hand side of the first of equations 

(2.11) and assuming f(u) 3 0, a = Pp,“‘, PI = const, we obtain the 

known solution of the problem of motion of a gas for t > 0, where t = 0 

for the half-space n > 0 

u = 0, p = pz = const, 
5 1 

P=Pl=jpPl 516 

for the half-space x < 0 p = 0 p = 0 

u=$+!#‘], v=u)=o, (2.13) 

$<(?f)“2, (;y” (f% + ++$(ATL,li~ 

‘Ihe corresponding motion E,, is given by the equations 

U=~[~-(~~)l’a](~t-htO+l)-~+h(t_~)+l 
(2.14) 

These relations give the solution of the problem of the gas motion 

for t > tu, which at the time t = to in the half-space x < 0 satisfied 

the conditions p = 0, p = 0, and in the half-space n > 0 satisfied the 

relations u = Ax, v = hy, u) = AZ, p = p1 = const, p = p1 = const. 

It is interesting that the velocity of the gas particles next to the 

boundary of.the region of zero pressure is the same for the motions I!’ 
and E0 being equal to 3(5/3 pl,/pl)“*. 

3. Point explosion in a uniformly expanding and in a uni- 
formly compressing gas. In the motion E’, for t = 0 

u=v=w =o, P = p1 = const, p = p1 = const 
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At the time t = 0 at the point x = y = z = 0, energy E is instantane- 

ously liberated [21. F or time t > 0 there are two regions, separated by 

a shock wave: a re ion of disturbed motion next to the point r = 0 
[r =J(n2 +y* f + z )I, and a region of undisturbed motion. We shall 

write the law of the variation of the distance r2 of the wave from the 

point r = 0 in the form 

E r; = - ( 1 P 
l’*p (f), t’ = p/s pl-l/2p~J” t (F (0) = 0) (3.1) 

Considering motion with spherical s-try, let v denote the projec- 

tion of the velocity vector on the radius vector. For the velocity II+, 

density p+ and pressure p+, the following relations [21 hold behind the 

wave 

v+= +(+y”{lv(f) -~&$, N(f) =w 
N(oo)=-f;, N (0) = oc P-2) 

p+=4 I+ 5 
PI { n(t’)r ’ \ 

-l p+ = ; 
Pl 1 

N (t”)‘- $1 (3.3) 

We shall assume that the motion inside the disturbed region is given 

in the form 

v = v+ v (t’, r / r2), P = P+R (f 9 r / rt) p = p+p (f, r / rz) 

v (f, i) = 1, R (t”, 1) = 1, P (t”, 1) = 1 (3.4) 

At time t ** << 1 the main terms for F( t “) and N( t “) will be the ex- 

pressions 

F (f) = a-1’K t”“‘, N (t”) = +--1/s+a (a = 0.437) (3.5) 

where the given value of a was obtained by numerical calculation [Il. 

The main terms in the expressions (3.1) to (3.3) will be 
(3.6) 

P+ = 4PI9 P+= 

The last expression will be exact if we put p1 = 0 (strong explosion). 

Inside the region of disturbance we have the expressions [31 



Invariant 

Using Theorem 1.2, 

in the case of motion 

ing to the law 
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equations (1.22) and equation (3.1), we find that 

E. a shock wave is propagating in the gas accord- 

g = &d* ,.+-‘I” 
P? (a -&) (3.8) 

a = con&, b= con&, c= const 

Outside the spherical shock wave (in front of it) we obtain from 

equations (l.lZ), (1.13) and (1.14) 

r 
2)=-, 

c-c P = P&)8' P = Pl (y&y Gw 

where PI is the projection of the velocity vector on the radius vector. 

This indicates that a uniform expansion or compression of the gas takes 

place. We shall select the constants a, b and c such that motion E. will 

give a solution of the problem of the gas motion according to the 

initial conditions 

u = Ix, 2, = hy, w = hz (h = const); p = pr, p = p1 # 0 for t = to 

The energy E is instantaneously liberated at the point r = 0 at 

i! = to. In view of equations (2.5), (2.6) and (2.7) and their deriva- 

tion, put b = l/A, c = to - l/A. Requiring that, in equation (3.8), 

‘2 = 0 for t = t,, we also put a = I/A. 'Ihen equations (3.8) and (3.9) 

will have the form 

For small values of -r" (values of t near to) equation (3.10) is 
identical to equation (3.1) in its main term, if in the latter equation 

we replace t by t - to. From this it follows that in equations (3.10) 

and (3.11) the quantity E is equal to the energy which is supplied 

instantaneously at t = to in the motion E,, i.e. in the uniformly ex- 
panding or compressing gas. Using equations (1.12), (1.13), (1.14) and 

(3.10) for the motion E,, instead of equations (3.2) to (3.4)‘ we obtain 
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vu, = - ; (~)“2{N(~)-~&) (At - Ato + I)-’ + A (+,I” F (t”) (3.14) 

Pl (At -pL + 114 =4(1+&i 9 t 
-1 

h(kt-tii+l)-~ 
=;{N(S)+} 

(3.15) 

Let us first investigate the case A > 0 (explosion in an expanding 

gas). From the second of equations (3.10) we have for h > 0 

” 
ZW = lim f = 

t-e03 
+ ~‘~sp~-‘laPp,6/a 

(3.16) 

From the equations (3.10) and (3.11) we find that the mass of the 

gas M, confined inside the sphere which coincides with the shock wave, 

is equal to 

M = +np,;F (f)s 

This mass remains bounded when t increases 

(3.17) 

!iII M = M, = f Jcp, + F (TwN)S 

EQuation (3.14) leads to 

(3.18) 

lim v+=v+,= 
t-Pa, 

A (+)I” F (zoo”) (3.19) 

Differentiating equation (3.10) and going over to the limit we obtain 

limG= NW = A (+)l” F (TV”) (3.20) 

Let us designate the velocity of a gas immediately after the shock 

wave by v_. In the first of equations (3.11) we assume r = rZ (where r2 

is given by the equation (3.10)) and go over to the limit; we obtain 

limv_=v,= 
t-boo 

A (;)I” F (zoo”) (3.21) 

Equations (3.19), (3.20) and (3.21) show that at t - 0~ the velocity 

of shock wave propagation relative to the moving particles of the gas 

undisturbed by the shock wave approaches zero. Also the increase of 

particle velocity due to the shock passage approaches zero. lhe third 

of equations (3.11) shows that the denominator on the left side of the 
second equation of (3.15) represents the pressure p_ in front of the 

shock wave; we have 

lim P+ - 3 
i-uop-- 4 1 

N (r-“)z - + 
1 

(3.22) 
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When t - 0~ the magnitude of p_ and p+ approach zero. 'lhe right side 
equation (3.22) equals 1 only for -rco'*= 0~) for finite values of T,,,'" 

is greater than 1. 'lherefore, for any combination of the resulting 

quantities in expression (3.16) for r,", the ratio p+/p_ when t + 0~ 

approaches a finite value greater than unity. 

Consider the expression for the kinetic energy E,, of the mass of gas 

inside the sphere of the shock wave 

(3.23) 

Let us find the limit of Ev for t - CQ. In this limit the influence 
of the first term on the right side of the equation (3.12) vanishes. 

Using equations (3.10), (3.12), (3.13) and (3.16), we obtain (3.24) 

The internal energy EP of the mass of gas inside the sphere of the 

shock wave, in the case of a monatomic gas (y = S/3), equals 

rx 

EP = 4n 
s 

+pr”dr = 6nra3 

0 0 

(3.25) 

Using (3.10) and (3.13), we obtain lim EP = 0 for t * a~. 

If no explosion occurred in the gas of mass M given by the equation 

(3.17), then the condition of the gas would be determined by equations 

(3.11). For t - m the internal energy would approach zero, and the 

kinetic energy obviously would approach the expression 

f;im_ E, = ; np,A* (E)l" F (~~76 (3.26) 

'Ihe difference between the right-hand sides of equations (3.24) and 

(3.26) is equal to the energy of the explosion. Considering this differ- 

ence and substituting the quantity h from equation (3.16), we obtain 

or after cancelling the quantity E 
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The quantity I,” may assume, as is seen from the relation (3.16), 
any values from 0 to m. By using this unusual method, we have obtained 

a certain integral relation for a point explosion in a stagnant 
monatomic gas, because the functions F, N and R contained in it and de- 

fined by the equations (3.1), (3.2) and (3.4) pertain precisely to this 
case. 

The foregoing analysis shows that, in solving the problem of the 

point explosion in a uniformly expanding gas, and by means of the same 

universal solution of the problem of the point explosion in a stagnant 

gas, a one-parameter family of solutions is obtained in which the 
quantity TV” appears as the parameter. In solving the problem of a point 

explosion in an expanding gas, for every fixed value of TV” up to t - ~0 

use is made of only a “part” of the solution of the problem of a point 

explosion in a stagnant gas, which is determined by the range of vari- 

ation of the non-dimensional time 0 < t”< -rco”. In the expanding gas 

there occurs a peculiar “freezing” of the processes, corresponding to 

the analogous processes taking place in a stagnant gas. ‘This “freezing” 

may come about at the stage of stron g blast if, for the corresponding 

T,” in equation (3.3), we have 

${n: (Go”) - $}>I 

at the stage of “strong blast” with back pressure, if 

${N (zoo’) -p}= 1 

and at the stage of the dying-out of the explosion, if 

f @ (Gon) - +} -g 1 

If h < 0 (explosion in a uniformly compressing space), then for 

t-t - 0 l/A = to, according to the formula (3.10) T” - a~, and con- 

sequently, in the interval of time to < t < to - l/A, regimes are 
established similar to those which are realized for an explosion in a 

stagnant gas in an infinite interval of non-dimensional time: O< t ” < ~0. 

The second equation of (3.15) gives 

Ii:, E = :!FW $ {rl: (2”)2 - f} = 1 (3.25) 
: -. ” 

Therefore, the relative pressure increase in a shock wave for 

& pi0 

- l/h becomes infinitely small. For t” large the function 

-mast “J(5/3) ( acoustic shock wave). 1Jsing this asymptotic 

value we obtain from equations (3.10) 

lim r2 = r,, = - + (% :)I/2 = _ + a, 
f-f0 

(3.29) 
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where a1 is the sound velocity in the compressing gas at t = ta. 'lhe 

essence of relation (3.29) is easily explained. Relations (3.11) charac- 
terize the undisturbed state of the compressing gas. In this condition, 
the region in which the velocity is greater or equal to the sound velo- 
city is described by the expressions 

1 5 p1 112 
r>--- -- 

( > J. 3 Pl 
(3.30) 

The shock wave is propagating through the gas particles, the velocity 
of which is directed towards the point r = 0. If the wave becomes 
acoustic, its position in space becomes fixed at the value r2, deter- 
mined by equation (3.29)‘ where the velocity of the wave propagating 
through the gas particles is equal to the velocity of motion of the 
particles toward the point r = 0. 

It is evident that, for t - t,, - l/A, every gas particle enters the 

sphere of the shock wave, because for t - t,, - l/A any fixed particle 
outside the shock wave moving according to equation (3.11) approaches 

arbitrarily close to the point r = 0. Expression (3.29) for rpm does not 
depend on the explosion energy E. Also, from physical considerations it 
is clear that if we fix the quantities h, pl, pl, and some instant of 
time t = t,, t0 ( tl < t0 - l/h, then, provided E is sufficiently large 
at the moment t = tlr the quantity r2 will be arbitrarily large and, in 
any case, it may be made greater than the quantity rza. But this means 
that for such values of E the radius r2 of the shock wave sphere for 
t > t,, first increases in time and then decreases to the value r2=. 

For the motion determined by equations (3.11) (for h < O), let us 
find the boundary r = r’(t) of the variation in time of the region of 
infinitely small disturbances, produced at the point r = 0 when t = t2, 
where t,, < t2 < t0 - 1/A. We have 

dr’ hr ’ 
dt = A (f - to) + 1 + (% 3’” h (f -‘to, + 1 

(3.31) 

Integrating and requiring that the condition r’ = 0 at t = tq be 
satisfied, we obtain 

r”= __’ 5 Pl 1/a ( ) t-f2 -_ 
AJ 3 p1 to-l//-_-~ 

(3.32) 

For t = t, - l/A, r* = rZmI where rzat is determined by equation 

(3.29). Thus the front of the shock wave moves with constant velocity 
equal to the velocity of sound at t = t,. At t = to - l/A the sound 
waves produced at the point r = 0 at any arbitrary time reach the 
sphere r = rzm. All the acoustic disturbances produced at the point 
F = 0 are concentrated inside this sphere, 
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4. Exact solution of the problem of a point explosion 
without back pressure in a uniformly expanding and a uni- 
formly compressing gas. Consider now the case p1 = 0 and p1 f 0 
(strong explosion without back pressure). For convenience we substitute 
expressions (3.6) into equations (3.7), so that the quantities are ex- 
pressed in terms of t, r and u, and obtain 

r = * 1’5~2’6p-. ( 1 aX 
2'5(5p - 4)2.'12(~+)-*2'19* 

’ = 10 up1 
3 (1)"6~-2'iiP2'~(5P _ 4)2'1s (+-_Ca)-22'1W 

p=4p1(5jA - 4)2'12(4-3~)+$L)22'1s 

(4.1) 

P = &Pl($y t-2/6~2'6(4 _ 3 

We take the functions v, p and p determined by these equations to be 
functions denoted by primes in the relations (1.12). Then, replacing r 

and t in equations (4.1) by 

iit- ilo+ 1 ’ 

2 - to 
h (t - to) +i = z (4.2) 

respectively, we obtain an exact solution in parametric form of the 
problem of a strong point explosion in a uniformly expanding and com- 
pressing space 

“‘$‘S(~ --k, + l)p--a/5($ - 4)2'$;+22'1gL 

3 E 1’s 
“=-ii7 z ( > 

f-816 
ps’+-z@‘ls 

at-actto+ % - + ~)-m’1s6 -k a (t -“:,, +i (4.3) 

p = 4p, (2 - At, + I)-2(5p - 4)s'" (4 - 3p)-8 (f-$q2'1" 

P” 

To obtain the law of motion of the shock wave and the values of the 
quantities imnediately behind it, it is necessary to assume that u = 1 

in the last equations. Then 

‘a= (g)““[s(~~~+1]2’6(At - it, + 1) 

v+= ~(~)1’6[h(tt;-i~+1]-s’s(ht--to+1)-1+ 

+ (g)““qr(L-;+ir/, 
P+ = $Pl(~~‘s[bctt~t5+iT’s(bt-ht,+ 11-5 

(44 

(4.5) 

4Pl 
P+ = (at - 3,to -L 1)s (4.3) 
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Chtside the shock wave, p E 0, and v and p are determined by equa- 

tion (3.11). The expression for the mass of gas inside the shock wave 
has the form 

M = p&t - At,+ 1)-S -+*a = $np, (gJa’“[&--t:;+ ill/l 

For h > 0 (expansion) at t - ~0, and for h < 0 (compression), 
for t - to = t0 - l/h, respectively 

fEM = M, =$ np, (&)S/‘h-s/6 (k > Oh 1imM = cc 
l-+f 0 

(4.7) 

we have 

(4.8) 

(A.<@ 

In the case A > 0 the shock wave will “overtake” only those particles 
in its motion which at t = t,, were contained in the sphere, the radius 

of which is determined by the expression 

r__ e Its - ( 1 h-216 
apl 

(4.5) 

For A > 0 the shock wave will “overtake” in its motion (at t - to - 

l/A) every gas particle. For h < 0 the expression (4.5) for r2 vanishes 
at t = to and t = to - l/h. 

The maximum value of r2 is equal to 

r2 = r2max 
= $( i r’*(&,,” (for t-h=- t+) (4.10) 

Thus, for A < 0 the law of variation of r2 with time for p1 = 0 

always has a non-monotonic character. Expression (4.5) is easily trans- 
formed into the form 

_g - E 1’6 (t--tp~qh(t +- - ( 1 =pl 
- to) + I]-s’a $ + ~(t-tJ] [ (4.11) 

For A < 0 it changes its sign at t = t,, - 3/10 A-‘, i.e. before the 

radius of the wave begins to decrease. For t -. t,, - l/A we have II+ --a~, 
i.e. the velocity behind the shock wave is directed toward the center 
of the explosion. If h > 0 and the value of the parameter r,“, defined 
by equation (3.16), is sufficiently small; then formulas (4.3) and (4.2) 
describe with sufficient exactness the motion in the entire infinite 
range of time 0 < t - t0 < m. If A < 0, then for p1 # 0, as was shown 
above, the shock wave becomes acoustic for t - to - l/A, and therefore 
the given equations are valid only in a certain initial portion of the 
interval 0 < t - to < - l/A. We note that the exact solution obtained 
for a strong explosion for p1 = 0 is no longer a similarity solution; 
it depends on three (dimensional ) parameters: pl, E and A. ‘Ihe para- 
meter to is not essential, because the quantity t - t,, may be substituted 
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for the quantity t, thereby changing the origin of time. 

In conclusion it should be noted that the reviewers of this paper 

competently pointed out that the invariant transformations (1.4), (1.5) 
and (1.6) may be derived from the results of 0vsiannikov [41. ‘lhis book, 
unfortunately became known to the author after the paper had been sub- 
mitted for publication. 
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